P. gingivalis Modulates Keratinocytes through FOXO Transcription Factors
نویسندگان
چکیده
P. gingivalis is a prominent periodontal pathogen that has potent effects on host cells. In this study we challenged gingival epithelial cells with P. gingivalis with the aim of assessing how mRNA levels of key target genes were modulated by P. gingivalis via the transcription factors FOXO1 and FOXO3. Primary mono- and multi-layer cultures of gingival epithelial cells were challenged and barrier function was examined by fluorescent dextran and apoptosis was measured by cytoplasmic histone associated DNA. Gene expression levels were measured by real-time PCR with and without FOXO1 and FOXO3 siRNA compared to scrambled siRNA. P. gingivalis induced a loss of barrier function and stimulated gingival epithelial cell apoptosis in multilayer cultures that was in part gingipain dependent. P. gingivalis stimulated an increase in FOXO1 and FOXO3 mRNA, enhanced mRNA levels of genes associated with differentiated keratinocyte function (keratin-1, -10, -14, and involucrin), increased mRNA levels of apoptotic genes (BID and TRADD), reduced mRNA levels of genes that regulate inflammation (TLR-2 and -4) and reduced those associated with barrier function (integrin beta-1, -3 and -6). The ability of P. gingivalis to modulate these genes was predominantly FOXO1 and FOXO3 dependent. The results indicate that P. gingivalis has pronounced effects on gingival keratinocytes and modulates mRNA levels of genes that affect host response, differentiation, apoptosis and barrier function. Moreover, this modulation is dependent upon the transcription factors FOXO1 or FOXO3. In addition, a new function for FOXO1 was identified, that of suppressing TLR-2 and TLR-4 and maintaining integrin beta -1, beta -3 and beta -6 basal mRNA levels in keratinocytes.
منابع مشابه
Arsenite-induced stress signaling: Modulation of the phosphoinositide 3′-kinase/Akt/FoxO signaling cascade☆
FoxO transcription factors and their regulators in the phosphoinositide 3'-kinase (PI3K)/Akt signaling pathway play an important role in the control of cellular processes involved in carcinogenesis, such as proliferation and apoptosis. We have previously demonstrated that physiologically relevant heavy metal ions, such as copper or zinc ions, can stimulate this pathway, triggering phosphorylati...
متن کاملA FoxO-Smad synexpression group in human keratinocytes.
Transforming growth factor beta (TGF-beta) signals through activation of Smad transcription factors. Activated Smad proteins associate with different DNA-binding cofactors for the recognition and regulation of specific target genes. Members of the forkhead box O family (FoxO1, FoxO3, and FoxO4) play such a role in the induction of the cyclin-dependent kinase inhibitors p15Ink4b and p21Cip1. To ...
متن کاملTranscription Factor Binding Site Analysis Identifies FOXO Transcription Factors as Regulators of the Cutaneous Wound Healing Process
The search for significantly overrepresented and co-occurring transcription factor binding sites in the promoter regions of the most differentially expressed genes in microarray data sets could be a powerful approach for finding key regulators of complex biological processes. To test this concept, two previously published independent data sets on wounded human epidermis were re-analyzed. The pr...
متن کاملBee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways.
Periodontitis is a chronic inflammatory disease that leads to destruction of tooth supporting tissues. Porphyromonas gingivalis (P. gingivalis), especially its lipopolysaccharides (LPS), is one of major pathogens that cause periodontitis. Bee venom (BV) has been widely used as a traditional medicine for various diseases. Previous studies have demonstrated the anti-inflammatory, anti-bacterial e...
متن کاملFOXO Transcription Factors: Their Clinical Significance and Regulation
Members of the class O of forkhead box transcription factors (FOXO) have important roles in metabolism, cellular proliferation, stress resistance, and apoptosis. The activity of FOXOs is tightly regulated by posttranslational modification, including phosphorylation, acetylation, and ubiquitylation. Activation of cell survival pathways such as phosphoinositide-3-kinase/AKT/IKK or RAS/mitogen-act...
متن کامل